

Introducing 5GMEC4EU A European Commission Perspective

Christian Micas

Future Connectivity SystemsEuropean Commission, DG CONNECT5G Corridors Workshop, 16 October 2024

The 5G-Edge "continuum"

Large-scale 5G deployments Major transport paths		< Edge-Cloud infrastructure >	Local 5G systems	
		Smart Cities	Rural areas	
				Geographical continuum : From main corridors and cities to local communities and villages
Edg infr	e-Cloud astructure	Use Case Use Case	Use Case	<u>Technology Continuum</u> : Application-driven vertical integration, stimulus to EU digital supply chain
Con and	nected objects devices (IoT)			

Creating the Connected Collaborative Computing Network (3C Network)

White Paper on Europe's Digital Infrastructure Needs, Pilar 1

- Telco Edge Cloud integrated and secure infrastructure and platforms spurring innovation in different vertical domains
- Scale-up across border for testing and piloting new technologies and applications such as connected and automated mobility (CAM), transport and logistics
- Computing at the edge to enable AI-powered algorithms for CAM and smart communities pilots

3C Network under the 2nd CEF Digital Work Programme 2024-2027

- Alignment with the "3C network" narrative of the White Paper
- Deployment and take-up of standalone 5G systems as part of Large-Scale Pilots
- Integration of devices, network, cloud and edge computing, and communication capabilities
- Demonstrate the benefits, in concrete use cases, of the evolution towards virtualised and cloudnative network functions and distributed telco edge cloud

Many thanks for your attention !

https://digital-strategy.ec.europa.eu/en/policies/cross-border-corridors

5GMEC4EU: Who are we?

5G MEC

nart Communitie

5GMEC4EU in a Nutshell

Project Duration: 30 Months

Project Start: January 2024

Consortum: Monotch & Detecon

Funding: CEF Digital

Managed by: HaDEA

Type: Coordination & Support Action (CSA)

Main Stakeholders: 5G Smart Communities & 5G Corridors

The **5GMEC4EU** project supports the establishment of a "Connected Collaborative Computing" – "3C Network" to align 5G infrastructure and share knowledge across stakeholders. It supports **5G Smart Communities** and **5G** Corridors in implementing edge computing through their 5G projects, enhancing Europe's edge capabilities and fostering profitable business models.

Paul Potters Menno Malta

Nicolas Mercier

5GMEC4EU coordinates and supports the implementation of edge cloud technologies in 5G Corridor and 5G Smart Community deployment projects.

Supporting the integration of MEC, 5GMEC4EU focuses on use cases and architecture, with RAN as the foundation and business models as the outcome

MEC & Edge Computing in a Nutshell.

Indoor/ Small scale

- Industrial UCs
- Smart Home/ Hospital
- Limited-area deployments

Outdoor / Large-scale

- Mobility Use Cases
- National and multi-national deployments
- Smart agriculture, smart logistics, etc.

Other

All other UCs

To enable a **pan-European** edge capabilities, **IPCEI CIS** project was launched and aims to build **Edge Cloud** technology across **Europe**.

IPCEI CIS/ 8ra

5GCroCo

EU Edge Landscape

MNOs in **EU** see the **raising interest** to Edge Computing & **MEC** and have developed their first offerings around **edge computing**.

Multiple EU-funded **projects** aimed to proof the **value of MEC** infrastructure by deploying **use cases** enabled by **edge computing technology**.

5GMOBIX

EU Corridors and art Communities

The Edge Continuum spans between devices and hyperscale cloud

Edge Continuum and Taxonomy

		On-device	On-premise	Cell Site/ Agg. Site	CO*/ Mini DC	In-Country DC
ETSI	MEC Host	Enterprise Edge	Enterprise Edge	Telco Edge	Telco Edge	
EDGE	Edge Node	Constrained/ Smart Device Edge	On-Prem DC Edge	Access Edge	Regional Edge	Centralized Data Centers
Edge Observatory	Edge Node	Device Edge/ on- device	Micro Edge (small-/ micro- scale)	Far Edge (Medium Edge)	Near Edge (Medium Edge)	Metro Edge
GSMA	Edge Node	Thing/ device	System/ Networked System	Far Edge	Near Edge	Fog / Cloud
Alliance for IoT and Edge Computing Innovation	Edge Node	Micro Edge, Deep Edge	Meta Edge	MEC	Far Edge	Cloud
IPCEI CIS**	Edge Node	On-device	On-premise	Far Edge	Near Edge	Regional Edge

*IOT – Internet of Things, CO – Central Office **No official taxonomy has been released yet

Evaluation of CEF projects regarding need for collaboration and MEC relevance

MEC Relevance

Challenges:

- **ges:** Long timing for deployment and high costs due to security constraints
 - The gap between industry-driven use cases and the underlying architectures
 - Need for local breakout in 5G network design
 - Lack of end customers and clear business value

We have made some updates to our core elements of the WP2

The target is to create a strong network of 5G Corridors, 5G Smart Communities other Smart City stakeholders, disseminating project knowledge, and hosting events to share relevant information.

Let's talk about Edge!

Dimitri Jungblut Detecon International Project Coordinator dimitri.jungblut@detecon.com

Paul Potters Monotch BV Netherlands Mobility Use Cases

paulpotters@monotch.com

Multi-Access Edge Computing in Automotive

Johannes Springer, Director General GUIDE workshop, October 2024, Brussels

Connected mobility for people, vehicles and transport infrastructure

5GAA bridges the automotive and telecommunication industries in order to address society's connected mobility needs bringing inclusive access to smarter, safer and environmentally sustainable services and solutions, integrated into intelligent road transportation and traffic management.

5GAA: A Global Cross Industry Association

C-V2X has two complementary communication modes

MEC

V2N

(Uu)

C-V2X Mobile Network Communications (Uu)

V2N/I2N/P2N in licensed spectrum bands designated for mobile network communication

V2N (Uu)

> I2N (Uu)

> > P2N

(Uu)

- Long range (>1 kilometer)
- Implemented over "Uu interface"

C-V2X Direct Communications (PC5)

V2V, **V2I**, and **V2P** operating in ITS bands (e.g. 5.9 GHz) independent of cellular network

- Short range (<1 kilometer)
- Implemented over "PC5 interface"

5GAA MEC workshop, Feb. 2018 (!!!), Munich approx. 150 participants from automotive and telecommunications

Birth of MEC4Auto work item (aka project) series

Basic requirements from Automotive regards MEC operation:

(1) Interworking betweenMobile Network Operatorsin the same area

(2) Global operational availability

Evaluation criteria of vehicle related use cases to be appropriate for MEC

Evaluation Criteria (examples):

- (1) CPU demand in the vehicle
- (2) Central Cloud operation capacities (incl. CPU demand), pre-processing possibilities in the MEC, incl. reduction of data transmission costs in backhaul
- (3) Demand for Data Transmission between vehicle and MEC, consumption of radio ressources
- (4) Maintenance of the software function
- (5) Function is using data sources from various User Equipment / devices on the spot
 - → e.g. ITS (Intelligent Transportation Services)
- (6) Availability of the function
- (7) Data privacy, processing of personal data locally
- (8)

Note: the evaluation need be executed use case by use case

Example: pedestrian crosswalk

Example: Automated Valet Parking / Automated Plant Marshalling

Expected Timelines for mass deployment of C-V2X use cases

Figure 2: Expected timelines for mass deployment of C-V2X use cases

Applied application architecture for V2N2X

https://5gaa.org/vehicle-to-network-to-everything-v2n2x-communications-architecture-solution-blueprint-use-cases/

MEC4Auto: Architectural options for MEC in Automotive

Figure 4.2.1-1: gMEC4AUTO updated reference architecture

https://5gaa.org/content/uploads/2023/04/5gaa-mec-system-interoperability-and-test-framework.pdf/

MEC4Auto complexities: Interworking between mobile networks

Figure 4.2.1.4-2: Interoperability of MEC, required inter-OEM MEC service

5GAA Face2Face Detroit, Oct. 2023

Figure 1: General System Setup

https://5gaa.org/reflections-and-findings-from-the-wi-vru-demo-experience-and-lessons-learned/

Applied application architecture for upcoming demonstrations in Berlin

Example: Pedestrian crosswalk

Example: Pedestrian jaywalking

Example: Bicycle approaching

Example: Roadwalkers Presence

Example: Emergency vehicle approaching

Further Requirements (Examples) → MEC availability

MEC is relevant for latency sensitive applications \rightarrow MEC availability is key

Root causes for loosing connectivity to a MEC (beside white spots):

(1) Border crossing

ightarrow Service continuity when crossing the border / switching from one MNO to another

(2) Network congestion

Examples: Cross-Border Germany – Luxembourg / Greece - Bulgaria

<u>Objective</u>: Seamless Mobility in cross-border driving between different Mobile Network Operators

- Previous project/s: 5GCroCo, 5GCarmen
- Deployment projects: 5GDeLux, 5GSeagul
- Stakeholders:
 - Mobile Netwok Operators: Telekom Germany, Poste Luxembourg, Cosmote, A1 Bulgaria
 - OEMs: BMW, et al.
- CEF2Digital Early Wave (works)
- Remarks: shall be used as a blue-print also for other cross-border seamless mobility

Increasing service resilience Network API's: exposure in a global world

Network API: Quality on Demand

Thank You !

Learn more at WWW.5GAA.ORG